Lista 3 Macroeconomia II

Yuri Passuelo - yuripassuelo@usp.br

September 3, 2025

Resolução dos exercícios da terceira lista da disciplinas de Macroeconomia II.

Aiyagari (1994) com 3 choques

- (a) Escreva uma versão do modelo de Aiyagari (1994) com três choques de produtividade (z_1, z_2, z_3) , onde $z_1 < z_2 < z_3$. Defina o espaço de estados, as funções valor e política, e o equilíbrio estacionário.
- (b) Use os seguintes valores para os parâmetros:
 - Taxa de desconto: $\beta = 0.96$
 - \bullet Coeficiente de aversão ao risco: $\sigma=2$
 - Função de produção agregada: $F(K,L) = K^{\alpha}L^{1-\alpha}, \ \alpha = 0.36$
 - Matriz de transição dos choques de produtividade:

$$\Pi = \begin{bmatrix} 0.7 & 0.2 & 0.1 \\ 0.2 & 0.6 & 0.1 \\ 0.1 & 0.2 & 0.1 \end{bmatrix}$$

- (c) Resolva numericamente o modelo e encontre a distribuição estacionária de capital dos agentes.
- (d) Compute e analise a desigualdade de renda, consumo e riqueza dos agentes, utilizando medidas como o coeficiente de Gini (ou pelo menos a variância, também pode usar a soma dos ganhos dos 10% mais ricos sobre os 10% mais pobres, etc).

Solution

Para esse modelo Consideramos nosso vetor de estados N:

$$N = \begin{bmatrix} 0.1\\1.0\\1.1 \end{bmatrix}$$

Aqui em baixo temos códigos que resolvem esse modelo em:

- MATLAB
- Python

Poucas diferenças nos scripts acima foram feitas em relação ao modelo de Aiyagari (1994). Com uma única diferença sendo que modificamos os scripts relacionados à:

Abaixo um resumo dos resultados:

Parameter	Values			
Calibrated				
β	0.96			
γ	2			
δ	0.05			
α	0.36			
Estimated				
\overline{r}	r = 0.0388			
w = 1.4064				

Table 1: Parâmetros Calibrados e Resultados

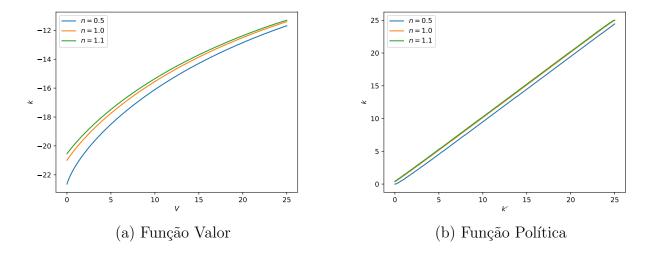


Figure 1: Funções Valor e Politíca

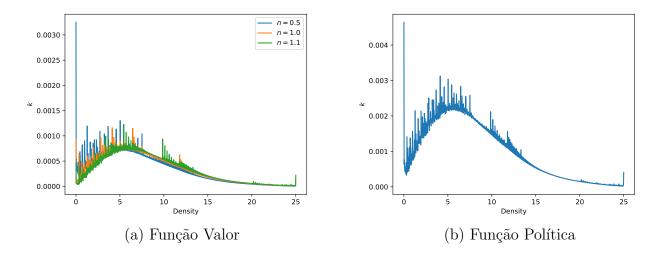


Figure 2: Distribuições

Abaixo Segue a curva de Lorenz e o coeficiente de GINI Associado, para os parâmetros selecionados chegamos em um coeficiente de

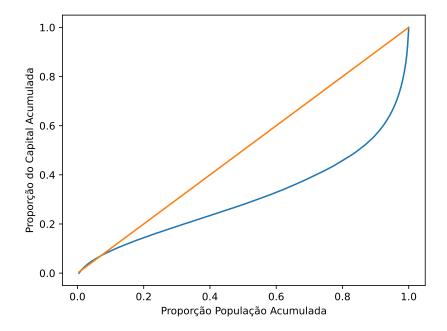


Figure 3: Curva de Lorenz

 $\mathrm{GINI} = 0.38413$

Modelo de Aiyagari com Oferta de Trabalho Endógena

(a) Refaça o exercício anterior, agora considerando oferta de trabalho endógena. Especifique a utilidade como:

$$U(c,l) = \frac{c^{1-\sigma}}{1-\sigma} - \theta \frac{l^{1+\eta}}{1+\eta}$$

Onde c é o consumo, l é a oferta de trabalho e θ e $\eta > 0$ são parâmetros.

- (b) Use os mesmos parâmetros do exercício 1, e adote $\theta = 1$ e $\eta = 1.5$.
- (c) Compare os resultados deste modelo com os do modelo do exercício 1. Como a oferta de trabalho endógena afeta a distribui c ao de renda, consumo e riqueza?

Solution

Para esse modelo modificações são necessárias em nos scripts Compute_policy.m e vfi.py, e novos objetos como por exemplo um grid de trabalho são necessários. Para nossa situações discretizamos um grid de 11 pontos de modo que:

$$l_grid = \{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1\}$$

Ou seja, temos ao todo 11 possibilidades de alocação de trabalho. Com base nesse grid e na iteração da função valor temos funções politica do trabalho distintas.

A modificação dentro da parte de iteração da função valor deve ser feita com cuidado, algumas dimensões podem mudar ao realiza-la, além disso é bom pensar em uma forma eficiente de implementa-la uma vez que se implementada com um *loop* diretamente pode acarretar em uma grande elevação dos tempos de calculo. Para caso deseje fazer em Python, recomendamos que utilize o pacote numba de forma que consiga compilar a iteração da função valor de forma mais rápida

Abaixo um resumo dos resultados, os repositórios com os códigos em MATLAB e Python, podem ser encontrados no site da monitoria.

Parameter	eter Values			
Calibrated				
β	0.96			
γ	2			
δ	0.05			
α	0.36			
heta	1			
η	1.5			
Estimated				
\overline{r}	0.0380			
\overline{w}	1.4134			

Table 2: Parâmetros Calibrados e Resultados

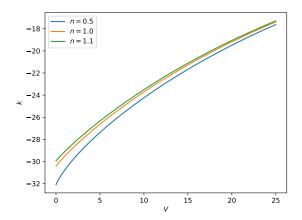


Figure 4: Função Valor

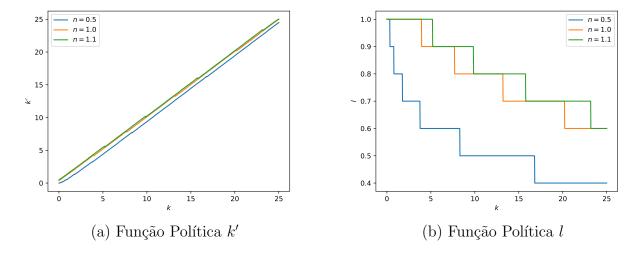


Figure 5: Funções =Politíca

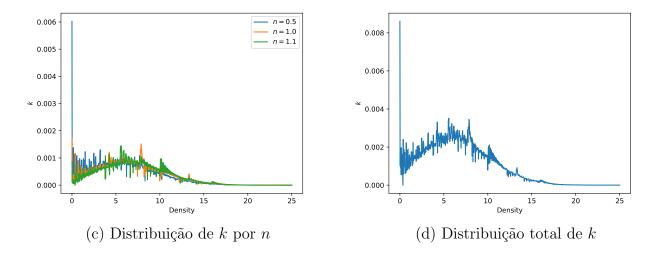


Figure 6: Distribuições

 ${\rm O~GINI}$ estimado para essa inclusão de trabalho acaba aumentando em relação ao último exemplo:

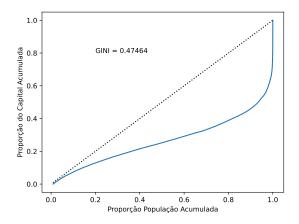


Figure 7: Curva de Lorenz

GINI = 0.47464

Mudanças: Com a implementação dessas mudanças temos algumas modificações no modelo, a primeira delas é o aumento da desigualdade medida pelo coeficiente de GINI, os retornos do capital r ficaram ligeiramente menores, enquanto os salários w ligeiramente melhores.

Modelo de Aiyagari com Governo e Taxação

Considere agora que o governo possui um gasto exógeno G=0.2Y, onde Y é o PIB da economia computada no exercício 1. O governo financia esse gasto via taxação sobre o salário ou a renda do capital. Use os parâmetros do exercício 1, com $\alpha=0.36$, $\beta=0.96$, e G=0.2Y.

- (a) Resolva o modelo e compute o steady state em duas situações:
 - Alíquota τ_w sobre os salários que equilibra o orçamento do governo.
 - Alíquota τ_k sobre a renda do capital que equilibra o orçamento do governo.
- (b) (desafio) Calcule e analise a transição dinâmica entre os dois steady states.

Solution

Para esse exemplo temos que primeiro:

- ullet Usar a taxação apenas sobre os salários w e depois sobre o capital r para computar o equilíbrio
- Com o objetivo de simplificar o tempo de calculo e interpretação aqui utilizaremos como base um modelo de Aiyagari sem escolha de trabalho, ou seja, indivíduos tem individualmente l=1 e de forma agregada L=1
- Usar 20% da economia do primeiro exercício nos traz um gasto exógeno de cerca de 0.42, porém com 0.42 podemos ter problemas de convergência quando taxamos somente o capital, portanto recomendamos para garantir alguma convergência usar um G = 0.1.

Abaixo temos os resultados para essas duas Economias sem escolha de trabalho e com gasto exógeno mostrando os equilíbrios.

Variável/Tributação	k	l	$k \in l$
\overline{r}	4.09%	4.21%	4.17%
w	1.39	1.37	1.38
au	33.34%	8.41%	$\mid 6.66\% \mid$

Table 3: Caption

Funções Valores.

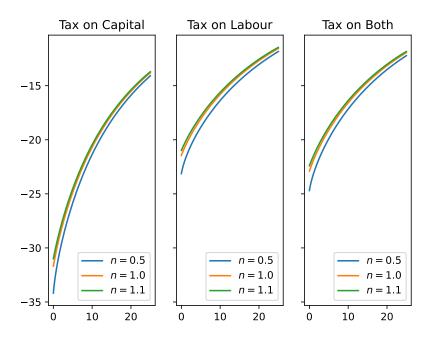


Figure 8: Funções Valor

Funções Politicas.

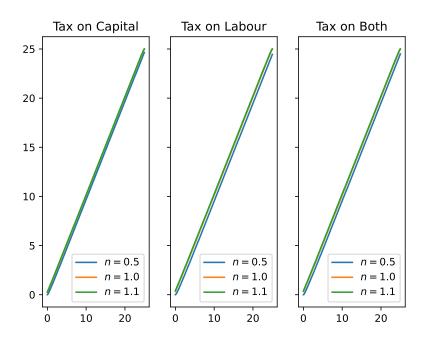


Figure 9: Funções Politica

Distribuição de ativos.

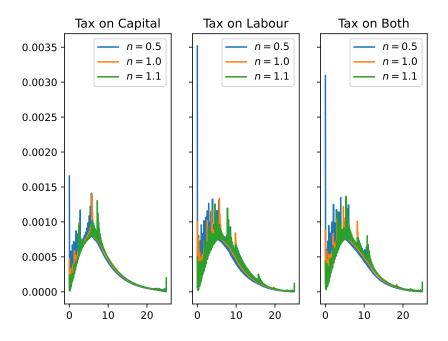


Figure 10: Distribuição de ativos

Para resolver esse exercicio existem duas opções de algoritmo, uma resolve

Modelo de Aiyagari com Empreendedores

Considere uma extensão do modelo de Aiyagari (1994) em que os agentes, a cada período, escolhem entre duas ocupações: ser um trabalhador ou ser um empreendedor. Empreendedores gerenciam seus próprios negócios, enquanto trabalhadores oferecem sua força de trabalho no mercado. Empreendedores combinam sua habilidade empresarial ϵ , capital k, e trabalho n em um projeto. Cada pessoa faz a escolha ocupacional para t+1, de modo que não conhece perfeitamente sua produtividade como trabalhado s_{t+1} ou sua habilidade empresarial ϵ_{t+1} . Ele sabe apenas que estes objetos seguem cadeias de Markov distintas.

Assuma que os empreendedores têm acesso a uma tecnologia de retornos decrescentes à escala (DRS), representada por uma função de produção $f(k, n, \epsilon)$, que produz output dado (k, n, ϵ) . Os lucros $\pi(a, s, \epsilon)$ dos empreendedores são dados por:

$$\pi(a, s, \epsilon) = \max_{k, n} \{ f(k, n, \epsilon) + (1 - \delta)k - (1 + r)(k - a) - w \max\{n - s, 0\} \}$$

Sujeito à restrição de que o capital emprestado (k-a) não pode exceder uma fração ϕ da riqueza total do empreendedor (ϕa) .

- (a) Denote $V^w(a, s, \epsilon)$ o valor de ser um trabalhador com riqueza a, produtividade do trabalho s, e habilidade empresarial. Denote $V^e(a, s, \epsilon)$ o valor de ser um empreendedor. Escreva o problema de escolha ocupacional e de consumo dos agentes, assumindo uma taxa de juros r e um salário w dados.
- (b) Defina formalmente o equilíbrio competitivo recursivo estacionário do modelo.
- (c) Descreva os passos de um algoritmo numérico que possa ser utilizado para computar o equilíbrio estacionário do modelo, levando em conta a heterogeneidade dos agentes em termos de riqueza, produtividade do trabalho, e habilidade empresarial.

Solution

Vamos primeiro ao problema geral que se mostra como:

$$V(a, s, \epsilon) = \max \{V^w(a, s), V^e(a, s, \epsilon)\}\$$

Ou seja, cada individuo deve escolher em cada período, se prefere o Problema do trabalhador:

$$V^{w}(a,s) = \max_{a',c,l} \left\{ u(c,l) + \beta \mathbb{E}[V(a',s',\epsilon')] \right\}$$

Sujeito à:

$$c + a' \le (1 + r)a + wsl$$

$$a' \ge 0$$
$$0 \le l \le 1$$

Problema do Empreendedor:

$$V^{e}(a, s, \epsilon) = \max_{k, l} \left\{ \pi(a, s, \epsilon) + \beta \mathbb{E}[V(a', s', \epsilon')] \right\}$$

Aonde:

$$\pi(a,s,\epsilon) = f(k,l,\epsilon) - (1+r)(k-a) - w \max\{l-s,0\}$$

Sujeito à:

$$k - a \le \phi a$$
$$k \ge 0$$
$$n > 0$$

- (b) Um equilíbrio competitivo recursivo estacionário para esta economia será composto por:
 - 1. Duas funções valor V^e V^w , funções política g_l^w , g_c^w e g_k^w para o trabalhador e g_c^e , g_a^e g_l^e , g_k^e para o empreendedor
 - 2. Preços $r \in w$
 - 3. Distribuições dos agentes dentro de $\Psi(s,a)$ e $\Phi(s,w)$
 - 4. Agregados de Capital K e L

Tais que:

- 1. Dados preços r e w, V^w é solução para o problema do trabalhador com g_l^w , g_c^w e g_k^w funções politicas associadas a resposta ótima, e V^e é solução para o problema do empreendedor e g_c^e , g_a^e g_l^e , g_k^e funções politicas associadas a resposta ótima.
- 2. Será que incluímos isso? Semelhante a firma.

$$r = f_k(K, L)$$

$$l = f_l(K, L)$$

3. Consistência:

- $\bullet~\Psi(s,a)$ distribuição estacionaria consistente com as funções politicas g_a^w
- $\Phi(\epsilon,a)$ distribuição estacionaria consistente com as funções politicas g_K^e

4. Agregação:

$$\sum_{\epsilon} \int_{K} k d\Phi(k, \epsilon) = \sum_{S} \int_{A} a d\Psi(a, s)$$

$$\sum_{\epsilon} \int_{K} g_{l}^{e}(a, s, \epsilon) \epsilon d\Phi(k, \epsilon) = \sum_{S} \int_{A} g_{l}^{w}(a, s) s d\Psi(a, s)$$

Demanda por trabalho e capital dos empreendedores e oferta de trabalho e capital dos trabalhadores devem se igualar (equilíbrio)

(c) Passos para a computação do algoritmo:

Para computar o equilíbrio desse tipo de modelo basta usar a definição de equilíbrio colocada acima, temos duas etapas aqui para achar o equilibrio, a primeira se trata de computar a função política dos trabalhadores e empreendedores, nessa etapa, para dados parâmetros apenas computamos as decisões ótimas.

Dada as decisões ótimas agregamos a oferta e a demanda tanto de Capital produtivo quando de trabalho e checamos se temos um excesso de oferta ou de demanda de cada um dos insumos e a partir disso atualizamos os parâmetros de juros e salarios.

- 1. Parametrização da Economia:
 - Definição da função de Utilidade;
 - Definição da função de Produção
 - Definir parâmetros como β , α , σ e δ ;
- 2. Definição dos chutes iniciais da taxa de juros r e dos salários w, aqui devemos chutar um valor alto e baixo tanto de taxa de juros (um r_H e r_L) quanto de salários (um w_H e w_L) para a realização da bisseção
- 3. Definição dos parâmetros de tolerância ε e máximo de iterações max_it
- 4. Computar as funções politica e Valor dos empreendedores e trabalhadores
- 5. Computar a distribuição estacionaria dos trabalhadores e dos empreendedores.
- 6. Computar oferta de Capital e oferta de Trabalho usando a distribuição estacionaria dos trabalhadores e as funções políticas dos trabalhadores
- 7. Computar demanda de Capital e demanda de Trabalho usando a distribuição estacionaria dos trabalhadores e funções politicas dos empreendedores

8. Computar as distâncias:

$$\operatorname{dist}_{L} = L_{d} - L_{s}$$
$$\operatorname{dist}_{K} = K_{d} - K_{s}$$

- Caso |dist| > ε , atualizamos os parâmetros usando a bisseção e voltamos ao passo 4.
- Caso contrário Encerramos e retornamos as funções políticas, funções valor e taxas de juros e salários de equilíbrio

Note que para esse algoritmo funcionar temos que fazer uma bisseção dentro de uma bisseção, então por exemplos a primeira bisseção usando a taxa de juros, e buscamos zerar a distância dist $_K$, e depois de zerada essa distância vamos atualizando o parâmetro de salário w até que a demanda por trabalho também zere, isso é um procedimento computacionalmente bem intensivo, pois para cada atualização de parâmetro de w temos que realizar uma bisseção em r